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Nonoscillatory advection schemes contain switches, so that the derivative of the
numerical solution at any time step with respect to that at the previous time step may be
discontinuous. In consequence, sensitivities calculated using the adjoint of the numer-
ical scheme may be discontinuous or ambiguous. This discontinuity is not a property
of the continuous advection equation; it is an artefact of the numerical schemes used
to solve it. The problem is demonstrated in some simple one-dimensional test cases.
We derive a result showing that there is no possibility of smoothing the switches in
nonoscillatory advection schemes to remove the discontinuities while retaining an
obvious and desirable scaling property. We discuss some alternative approaches to
deriving the adjoint schemes needed for sensitivity calculations.c© 2001 Academic Press
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1. INTRODUCTION

There are many problems in atmospheric and oceanic science where calculation of
sensitivities is required. These include (i) variational data assimilation, [e.g., 8, 25, 33];
(ii) parameter estimation or retrieval, [e.g., 12, 34]; (iii) understanding physical mecha-
nisms behind phenomena such as lee cyclogenesis [28], extratropical cyclones [13], block-
ing weather patterns [22], and El Ni˜no [19]; and (iv) quantifying the stability of realistic
atmospheric flows [7], with application to generating perturbed initial states for ensemble
weather forecasts [9] and for the possibility of using small pilotless airplanes to adaptively
target observations for initializing weather forecasts [20].

For any given mathematical or numerical model, sensitivities can often be computed
efficiently using the adjoint of the corresponding tangent linear model. For example, see [6]
for an introduction to adjoints and their uses. In all of the applications mentioned above,
adjoints are used for computing sensitivities because their computational cost is comparable
to that of the original model, making them vastly more efficient than other methods.
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Because both the tangent linear model and its adjoint are linear, one crucial factor limiting
the applicability of adjoints is nonlinearity in the original mathematical or numerical model.
For example, in four-dimensional variational data assimilation, which attempts to minimize
the mismatch between weather observations and the state of a weather forecast model
over a period of time as well as a region of space, the nonlinearity of the atmospheric
flow limits the assimilation period to about 1 day at most. For similar reasons, adjoints
are of limited use for quantifying climate sensitivity [15]. The nonlinearity problem is
particularly acute when the mathematical or numerical model contains discontinuities or
switches. For example, the representation of cumulus clouds in a weather forecast model
is usually triggered by a certain threshold value of the atmospheric stability. The most
extreme such form of nonlinearity, where fields at time stepn+ 1 depend discontinuously
on fields at time stepn, can lead to unbounded values for sensitivities. A milder form
of nonlinearity, in which derivatives of fields at stepn+ 1 with respect to fields at step
n are discontinuous, leads to discontinuous or ambiguous values for sensitivities [31].
Of course, such unbounded or discontinuous sensitivites might reflect properties of the
original physical system (for example, the sensitivity of cloud liquid water concentration
to temperature∂cl/∂T is discontinuous at the temperature at which condensation begins);
then, arguably, it may be desirable to capture them in the adjoint calculation. On the other
hand, extreme nonlinearities such as switches might be introduced in a mathematical or
numerical model without being present in the original physical system. Then any such
large or discontinuous sensitivitives indicated by an adjoint calculation would be entirely
spurious artefacts of the mathematical or numerical model and unrelated to the original
physical system. It is this last possibility that is the subject of this paper, in the context of
nonoscillatory advection schemes.

Godunov’s theorem [11] says that any linear, monotone advection scheme is at most
first-order accurate. First-order schemes, however, are regarded as too diffusive for many
applications. Therefore, if we require a scheme better than first-order accurate while avoid-
ing spurious oscillations, then we must use a nonlinear advection scheme, even though the
advection problem itself is linear in the advected variable when the advecting flow is given.
There are many examples of nonlinear nonoscillatory advection schemes in the literature,
including schemes based on flux limiters or slope limiters (e.g., see [5, 18] for an introduc-
tion), flux-corrected transport (FCT) [4, 32], or semi-Lagrangian schemes with nonlinear
interpolation to ensure preservation of monotonicity [1, 30].

This nonlinearity of nonoscillatory advection schemes raises a number of issues regarding
the properties of numerical advection and how they relate to those of real advection, e.g.,
[26]. In this paper we investigate how the nonlinearity of nonoscillatory advection schemes
affects the calculation of sensitivities, particularly when using adjoints.

In Section 2 below, we use simple examples to illustrate that the nonlinearity of some
commonly used kinds of nonoscillatory advection schemes is, indeed, strong enough to
lead to ambiguous sensitivities in adjoint calculations. It might be hoped that it would be
possible to construct nonoscillatory advection schemes whose adjoints are well-behaved
(in a sense to be made precise below). In Section 3, we show that any scheme having an
obvious and desirable scaling property cannot have a well-behaved adjoint unless the scheme
is fully linear. But then, by Godunov’s theorem, the scheme cannot be both nonoscillatory
and better than first-order accurate. This result motivates us in Section 4.1 to consider
alternative strategies for constructing adjoints of advection problems, and to consider some
issues that arise. All of this discussion is relevant even if no perturbations to the advecting
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velocity are considered. Further issues that can arise when perturbations to the advecting
velocity are considered in Section 4.2.

2. EXAMPLES OF PROBLEMS WITH ADJOINTS OF NONOSCILLATORY

ADVECTION SCHEMES

In this section, we use simple examples to show that the nonlinearity of typical nonoscilla-
tory advection schemes does, indeed, lead to ambiguous results from sensitivity calculations;
that is, the calculated sensitivities depend on exactly how the calculation is implemented and
on whether the calculation is carried out through multiple perturbed forward integrations
or using an adjoint.

For our test case, we use a one-dimensional periodic grid of 20 equally spaced points.
A control forward integration of the linear advection equation

∂

∂t
q(x, t)+ u

∂

∂x
q(x, t) = 0, (1)

with u constant is carried out, using one of the advection schemes discussed below. To
begin with, the initial profile is taken to be a delta function, since this illustrates the problem
most clearly. The initial profile is advected toward the right with a constant Courant number
u1t/1x of 0.5 for 20 steps. Letqn

i be the advected quantity at theith grid point aftern
steps. The valuesqn

i are saved at every time step of the control integration; these values
provide the “trajectory” in phase space about which the scheme is linearized to provide the
tangent linear model and its adjoint. We then ask what is the sensitivity

G0
j =

∂ J

∂q0
j

of a certain functionalJ of the final state to changes in the initial dataq0
j ? For illustration

we take a simple case in whichJ is just the value ofq at the 15th grid point at the final time
J = q20

15.
We calculated the sensitivity in two ways. The first way (the “multirun method”) used

multiple perturbed forward integrations. For each grid pointj , the initial valueq0
j is per-

turbed toq0
j + ε (ε 6= 0) and the integration rerun, yielding a modified final state withq20

15

replaced byq20
15 +1, say. The sensitivity is then estimated asG0

j ≈ 1/ε. If the advection
scheme were linear, then this estimate forG0

j would be exact and would be independent of
the value ofε. It would also be independent of the initial data used in the control integration.
For a nonlinear scheme we might hope thatG0

j would exist and that1/ε→ G0
j asε→ 0.

We therefore use a small valueε = 0.001 (that is, small compared to the range ofq values
in the profile) but check for convergence by rerunning withε = −0.001.

The second way of estimating the sensitivity uses the adjoint of the tangent linear model.
The values ofq at stepn are functions of those at stepn− 1, and if those functions are
differentiable, then the Jacobian

∂qn
i

∂qn−1
j
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exists. Letting

Gn
j =

∂ J

∂qn
j

,

we can then evolve the sensitivity backwards in time using

Gn−1
j =

∑
i

Gn
i

∂qn
i

∂qn−1
j

, (2)

that is, by multiplying the vectorGn by the transpose of the Jacobian matrix (e.g., [6]). If
the original advection scheme is linear, then the results will be identical to those obtained
with the multirun method. If, in addition, the advecting wind is constant, then it may easily
be verified that (2) amounts to advecting the sensitivity backwards in time using the original
advection scheme.

Figure 1 shows the results of this test case using the linear, third-order QUICKEST scheme
[16]. Panels (a) and (b) show the initial and final profiles for the control integration. Panel
(c) shows the sensitivity at the final timeG20

j . It is given byG20
15 = 1,G20

j = 0 for j 6= 15.
Panels (d) and (e) show the sensitivities to initial conditionsG0

j calculated using the adjoint
method and the multirun method, respectively. As expected, because the advection scheme
is linear, the two methods yield the same sensitivities, and both agree with advecting the
final sensitivity backwards using the QUICKEST scheme (compare with the mirror image
of panel (b)). The sensitivity calculation is clearly well-behaved in this case.

Figure 2 shows the sensitivities obtained when the QUICKEST scheme is made nonoscil-
latory by adding the Universal Limiter [17]. Now the sensitivity calculated by the multi-
run method is no longer independent of the value ofε. In particular, the values forε =
0.001 (solid curve) are quite different from those forε = −0.001 (dotted curve). As|ε| is
decreased further, the sensitivities do not converge. Furthermore, the values obtained from
the adjoint calculation are different again. The sensitivity calculation is clearly not well-
behaved in this case.

This bad behavior arises because the Jacobian

∂qn
i

∂qn−1
j

does not depend continuously on theqn−1’s. A simple example will illustrate the essence of
the problem without getting into the details of the advection scheme. QUICKEST with the
Universal Limiter, and indeed almost all other nonoscillatory advection schemes, involve the
computation of the minimum (or maximum) of certain sets of numbers, or some equivalent
calculation. Consider the functionf = min(a, b). Then fora < b(

∂ f

∂a
,
∂ f

∂b

)
= (1, 0), (3)

while for a > b (
∂ f

∂a
,
∂ f

∂b

)
= (0, 1). (4)
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FIG. 1. Test case results for the linear QUICKEST scheme. (a) Initial condition for the control forward
integration. (b) Final state for the control forward integration. (c) Sensitivity at the final time. (d) Sensitivity at the
initial time computed using the adjoint. (e) Sensitivity at the initial time computed using the multirun method.

However, the partial derivatives are discontinuous ata = b. This explains why the multirun
sensitivity calculations yield such different answers for positive and negativeε: if, at any
point in the control forward integration, the situation analogous toa = b (or a sufficiently
close tob) occurs, then positive and negative values ofε will put the solution into two
different regimes with (3) applying in one regime and (4) in the other.

This example also shows that, when a situation analogous toa = b occurs,

∂qn
i

∂qn−1
j
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FIG. 2. Test case results for the QUICKEST scheme with the universal limiter. (a) Sensitivity at the initial
time computed using the adjoint. (b) Sensitivity at the initial time computed using the multirun method; solid
curve forε = 0.001, dashed curve forε = −0.001.

no longer exists so that, strictly, the tangent linear model and its adjoint also no longer exist.
In order to obtain a sensitivity estimate from the adjoint calculation, some values for(

∂ f

∂a
,
∂ f

∂b

)
must be arbitrarily specified whena = b. Two possibilities are given by (3) and (4). A third
possibility is to take the mean of (3) and (4):(

∂ f

∂a
,
∂ f

∂b

)
=
(

1

2
,

1

2

)
. (5)

(There are many other equally defensible possibilities.) In fact, the result shown in Fig. 2a
used the analog of (5) in the adjoint calculation. The other two possibilities, analogues of
(3) and (4), give sensitivities that are different yet again (Fig. 3).

As we shall see in the next section, for most nonoscillatory advection schemes the problem
with discontinuous

∂qn
i

∂qn−1
j

is most acute at places where the profileqn−1 is flat. This is analogous to thea = b case
in the simple example discussed above. Then there areqn−1

j values that are on the verge of
becoming extrema, and the flux limiter or monotonicity fixer in the scheme is on the verge
of switching on. In view of this, the test case discussed so far is clearly quite a severe test
because the control forward integrationq profile is flat over many grid points. Nevertheless,
this test has practical relevance because extensive areas of flat (in fact zero) values occur,
for example, in the layer thickness field of isopycnal-coordinate ocean models where the
layers outcrop, and a nonoscillatory advection scheme (or at least a sign preserving scheme)
is essential to ensure that negative layer thicknesses are not created [3].
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FIG. 3. Test case results for the QUICKEST scheme with the universal limiter. Panels show sensitivity at the
initial time computed using two alternative approximations, analogous to (3) and (4), for the adjoint at the point

where
∂qn

i

∂qn−1
j

is discontinuous. Compare Fig. 2a.

Figures 4 to 7 show results from a less severe test case for a variety of nonoscillatory
advection schemes. In this case, the initial state for the control forward integration is a
wavenumber 1 sine wave, so that the strong nonlinearity associated with the flux limiter or
monotonicity fixer should only be important near the maximum and minimum of the sine
wave. For this test case, the scheme already discussed above (QUICKEST plus the Uni-
versal Limiter) is not very badly behaved, though there are noticeable differences between
the sensitivities obtained by the adjoint method and the multirun method, and among the
three versions of the adjoint method using analogues of (3), (4), and (5) above (only the
case corresponding to (5) is shown). However, the sensitivity calculations using the other

FIG. 4. Test case results for the QUICKEST scheme with the universal limiter. The initial data for the control
forward integration is a wavenumber 1 sine wave. (a) Sensitivity at the initial time computed using the adjoint.
(b) Sensitivity at the initial time computed using the multirun method; solid curve forε = 0.001, dashed curve for
ε = −0.001.
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FIG. 5. As in Fig. 4, but for the QUICKEST scheme made nonoscillatory using the flux corrected transport
algorithm [4, 32].

three advection schemes, which are typical of those in widespread use, are quite badly
behaved.

3. INVARIANCE UNDER RESCALING WITHOUT FULL LINEARITY

IMPLIES A BADLY BEHAVED ADJOINT

It might be wondered whether there is some way of constructing an advection scheme
that is well-behaved in sensitivity calculations without losing other desirable properties, for
example, by modifying an existing scheme so that the switches act more smoothly. In this
section we prove a result implying that this goal cannot be achieved.

Let A be the operator corresponding to an advection scheme that mapsqn−1 into qn:

qn
i = Ai (qn−1). (6)

FIG. 6. As in Fig. 4, but for a total variation diminishing (TVD) scheme using the van Leer limiter [27].
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FIG. 7. As in Fig. 4, but for a semi-Lagrangian scheme using cubic Lagrange interpolation with a simple
monotonicity fixer in which the interpolated value is forbidden to lie outside the range of the two nearest gridpoint
values (e.g., [1]).

Many advection schemes, whether linear or not, satisfy the scaling property

Aj (αq) = αAj (q) (7)

for all profilesq and for any constantα. Indeed, many satisfy the stronger relation

Ai (αq+ βc) = αAi (q)+ β (8)

for all profilesq and for any constantsα andβ, and wherec is the constant unit profileci =
1∀i . The scaling property (7) implies that rescaling the initial conditions before advecting
gives the same result as rescaling by the same factor after advecting. It implies that we obtain
the same physical result irrespective of what unitsq is expressed in. The stronger property
(8) implies, in addition, that adding a constant to the initial conditions before advecting
gives the same result as adding the same constant after advecting. Less obviously, property
(8) implies that two advected quantitiesq1 andq2 that are initially related by a straight line
functional relation

q2 = αq1+ βc (9)

retain this functional relation under advection. Compact functional relations, often close
to straight lines, between mixing ratios of long-lived chemicals give valuable information
about chemistry, transport, and mixing in the stratosphere, for example, and it is crucial for
numerical models to be able to capture those functional relations without distorting them
[e.g., 26]. Finally, properties (8) and (7) are implied by full linearity, though the converse
is not true. The continuous advection equation is linear in the advected quantity when
the advecting flow is given, and therefore satisfies continuous analogues of (7) and (8),
(whereA is then interpreted as the operator that advects the fieldq for a finite time). For
all of these reasons, the scaling properties (7) and (8) are arguably very desirable for an
advection scheme, given that full linearity cannot be achieved for a nonoscillatory scheme
that is better than first-order accurate. Many widely used advection schemes, and all of
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those discussed in Section 2 above, have property (8). Schemes that are sign preserving but
not fully nonoscillatory cannot have property (8), but many widely used sign-preserving
schemes [e.g., 5, 24] have property (7).

A numerical scheme of the form (6) will be well-behaved in sensitivity calculations,
including adjoint calculations, if and only if the Jacobian

∂Ai

∂qj

exists and is a continuous function of its data. Continuity of the Jacobian is also a necessary
condition for the “correctness” of any tangent linear model derived from the scheme (6)
[21]. It is clear that continuity of the Jacobian is indeed the property that determines whether
or not sensitivity calculations give ambiguous or even unbounded results, since

∂ J

∂q0
j

= ∂ J

∂qn
jn

∂Ajn(q
n−1)

∂qn−1
jn−1

∂Ajn−1(q
n−2)

∂qn−2
jn−2

∂Ajn−2(q
n−3)

∂qn−3
jn−3

· · · ∂Aj1(q
0)

∂q0
j

. (10)

(Here there is implied summation over each of the dummy subscriptsj1 , j2 , . . . , jn.)
We will now show that a scheme that has both property (7) and a continuous Jacobian

must be linear. First note, from the function-of-a-function rule for differentiation, that for
anyα

∂Ak(αq)
∂qj

∣∣∣∣
atq=p

= α ∂Ak(q)
∂qj

∣∣∣∣
atq=αp

. (11)

Also, taking∂/∂qj of (7) gives

∂Ak(αq)
∂qj

∣∣∣∣
atq=p

= α ∂Ak(q)
∂qj

∣∣∣∣
atq=p

. (12)

Hence, since the left-hand sides of (11) and (12) are equal, the right-hand sides must also
be equal

∂Ak(q)
∂qj

∣∣∣∣
atq=p

= ∂Ak(q)
∂qj

∣∣∣∣
atq=αp

, (13)

providedα 6= 0. But now the continuity of the Jacobian asα→ 0 implies

∂Ak(q)
∂qj

∣∣∣∣
atq=p

= ∂Ak(q)
∂qj

∣∣∣∣
atq=0

. (14)

That is, the Jacobian for any profileq must equal the Jacobian for a zero profile. Then the
partial derivatives can simply be integrated up, usingA(0) = 0, to give

Ak(q) =
∑

j

qj
∂Ak

∂qj

∣∣∣∣
atq=0

. (15)
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The scheme is manifestly linear, since the

∂Ak

∂qj

∣∣∣∣
atq=0

are constants.
The implication of this result is that an advection scheme satisfying (7) and with a

continuous Jacobian cannot, by Godunov’s theorem, be both nonoscillatory and better than
first-order accurate. An equivalent statement of the result is that a scheme that satisfies (7)
but is not linear cannot have a continuous Jacobian, and therefore cannot be well-behaved
in sensitivity caculations. This means that a nonoscillatory, better than first-order accurate
advection scheme (which must be nonlinear) that also satisfies (7) cannot be well-behaved
in sensitivity calculations.

In deriving the above result, we did not use property (8), but only the weaker scaling
property (7). Therefore, the conclusion applies not just to nonoscillatory schemes satisfying
(8) but also to sign preserving schemes [e.g., 5, 24], which must also be nonlinear to be
better than first-order accurate, as long as they have property (7).

It is instructive to note why the conditions of the above proof do not hold for the nonoscilla-
tory schemes discussed in Section 2, and other nonoscillatory schemes. The scaling property
implies that (13) must be satisfied. However, the Jacobian

∂Ak

∂qj

is not continuous for a flat profileq = 0 (or, in fact, forq = βc for any constantβ), so
we cannot make the step to (14). This highlights the fact that flat profiles are the most
problematic for sensitivity calculations, since arbitrarily small deviations from a flat profile
lead to finite changes in

∂Ak

∂qj
.

Finally, it might be wondered whether a well-behaved nonoscillatory scheme could be
obtained by abandoning the scaling property. Indeed this can be done, and an example
of such a scheme is given in the Appendix. However, on top of the extra complexity of
the scheme, it has several other undesirable features: (i) because the scaling property has
been abandoned, the results obtained with the scheme will depend on the units thatq
is expressed in; (ii) an arbitrary tunable parameter must be introduced against which to
measure deviations of theq profile from flatness; (iii) the scheme becomes only first-order
accurate when theq profile is close to flat. Overall, the disadvantages of such a scheme are
likely to outweigh the combined nonoscillatory property and good sensitivity behavior, and
we would not recommend this approach.

4. DISCUSSION AND CONCLUSION

4.1. Alternative Strategies for Building Adjoints

The result derived in Section 3 above motivates us to consider alternative routes to
constructing adjoints. In outline, there are three well-known possible routes:
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(i) Discretize-linearize-adjoint;
(ii) Linearize-adjoint-discretize; and
(iii) Linearize-discretize-adjoint.

So far we have been considering route (i), in which we have a discrete numerical model
and we wish to linearize and take its adjoint. Route (i) has the advantage that, given a
discrete nonlinear numerical model, the linearization and construction of the adjoint can
largely be automated [2, 10], greatly reducing the development effort required for complex
models. A second feature of route (i) is that it leads to an exact adjoint of the original
discrete nonlinear numerical model. The importance of this property is a subject of current
research [e.g., 14, 23], and it is likely that the answer depends on the application. In practice,
approximate adjoints have been used successfully for many applications (most of the ap-
plications mentioned in Section 1, for example, make some sort of approximation) though
an exact adjoint might be crucial for some purposes. The result of Section 3 implies that
if we insist on retaining a nonoscillatory advection scheme with scaling property (7) while
having a well-behaved adjoint then route (i) is no longer an option.

The simplest alternative to route (i) is a variation on route (i) in which the discretizition
used in constructing the adjoint differs from that in the original numerical model. For
example, the flux limiter or monotonicity fixer could be removed from a nonoscillatory
advection scheme for the purpose of constructing the adjoint. This retains the advantage
that the linearization and adjoint stages of the construction can be automated.

Route (ii) appears to be possible using either a linear advection scheme or a nonlinear
nonoscillatory advection scheme. For example, simple test cases, such as those in Section 2
in which the sensitivity is simply advected backwards using the original nonoscillatory
advection scheme, yield accurate and well-behaved results. Vuki´cević et al. [29] reached a
similar conclusion for a more realistic two-dimensional advective data assimilation problem.
The use of a nonoscillatory scheme would be ruled out if linearity of the adjoint were crucial
for the application and better than first-order accuracy were required (though not if property
(7) were sufficient). On the other hand, the continuous advection equation implies that the
sensitivity

∂q(x2, t)

∂q(x1, 0)

must be greater than or equal to zero; if it is important to capture the discrete analogue of
this

∂qn
i

∂q0
j

≥ 0,

then a nonoscillatory scheme, or at least a sign preserving scheme, must be used to advect
the sensitivity backwards [29].

Route (iii) is possible only if the discretization does not introduce any new nonlinearity, as
a nonoscillatory advection scheme would, for example. If the discretization does introduce
nonlinearity then a second linearization stage would be needed after the discretization. In
this case, the result of Section 3 would still hold, so it appears that nothing would be gained
by this approach.
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4.2. Effects of Perturbed Advecting Velocity

So far we have considered the advecting velocity to be fixed, and only the dependence of
A onq has been considered. If we follow route (i) of Section 4.1 then, in the more general
case, we must consider the dependence ofA on the advecting velocityu too. (The valuesul

may be defined at the same set of points asqj or staggered with respect to them, depending
on the grid and schemes used.) Then, in order for the tangent linear model and adjoint to
be well-behaved, we require∂Ak/∂qj and∂Ak/∂ul to be continous functions of bothq and
u. There are two possible sources of discontinuities, related to jumps in the stencil and to
switching of limiters.

Discontinuities caused by jumps in the stencil have been discussed previously, [e.g., 21].
Small changes in Courant number, usually as it crosses an integer value, can result in a
different set of gridpointq values (the stencil) being used to calculate the updated field,
and hence to discontinuities in∂Ak/∂qj and∂Ak/∂ul , or even inAk itself. This potential
problem is particularly relevant for semi-Lagrangian advection schemes because they are
stable for large Courant numbers, so providing more opportunities for near-integer Courant
numbers. Other kinds of advection schemes are usually restricted to Courant numbers bet-
ween−1 and 1 but may still experience a jump in stencil and a discontinuity in∂Ak/∂ul

as the Courant number goes through zero if the scheme is an “upwind” scheme. (∂Ak/∂qj

should approachδk j as the Courant number approaches zero, whereδk j is the Kronecker
delta, and should therefore be continuous across zero.) For semi-Lagrangian schemes, it
has been shown [21] that this problem can be eliminated by using interpolating functions
that are continuous and have continuous derivatives across grid cell boundaries.

Discontinuities caused by switching of limiters is a distinct problem, and is the topic of
this paper. Variations in eitherq or u might cause a limiter or monotonicity fixer to switch
on or off, and both∂Ak/∂qj and∂Ak/∂ul can be discontinuous across the limiter switching
point. Thus, any of the following possibilites might occur:

(i) ∂Ak/∂qj might be discontinuous asq varies across a limiter switching point;
(ii) ∂Ak/∂ul might be discontinuous asq varies across a limiter switching point.

For some limiters, variations inu cannot cause the limiter to switch. If variations inu can
cause the limiter to switch then

(iii) ∂Ak/∂qj might be discontinuous asu varies across a limiter switching point;
(iv) ∂Ak/∂ul might be discontinuous asu varies across a limiter switching point.

In the preceding sections we have examined possibility (i) and shown that this kind of
discontinuity is unavoidable for a nonoscillatory scheme satisfying the desirable scaling
property (7). A couple of examples will illustrate that the remaining possibilities may or
may not occur.

For a total variation diminishing (TVD) scheme with the van Leer [27] limiter,∂Ak/∂ul

is in fact continuous asq varies across the limiter switching point, so possibility (ii) does
not occur, even though∂Ak/∂qj is discontinuous. Also, variations inu do not cause the
limiter to switch, so possibilities (iii) and (iv) do not occur.

For the QUICKEST scheme [16] with the universal limiter [17], on the other hand,
∂Ak/∂ul is discontinuous asq varies across a limiter switching point, and also variations
in u can cause the limiter to switch and both∂Ak/∂qj and ∂Ak/∂ul will generally be
discontinuous asu varies across the limiter switching point. Thus, all four possibilities
(i)–(iv) occur for this scheme.
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4.3. Conclusion

Nonoscillatory advection schemes can lead to ambiguous results in sensitivity calcula-
tions, whether those calculations are carried out via multiple perturbed forward integrations
or by using the adjoint of a linearization of the scheme. Examples of the problem have
been shown in a simple test case for several schemes typical of those widely used. We
have shown that this sort of problem is unavoidable for nonoscillatory or sign-preserving
schemes that are better than first-order accurate and therefore nonlinear, unless a certain
desirable scaling property is given up. Consequently, alternative routes to constructing ad-
joints for advection problems must be considered, and another work [29] has shown that
the linearize–adjoint–discretize route can be successful.

APPENDIX: A NONOSCILLATORY SCHEME WITH A CONTINUOUS JACOBIAN

Consider advection schemes of the form

qn+1
j = qn

j + c(q̂j−1/2− q̂j+1/2), (16)

wherec is the Courant number, taken to be constant and positive here for simplicity. Dif-
ferent choices for determining thêq values yield different advection schemes. The sim-
plest nonoscillatory advection scheme with a continuous Jacobian is the first-order upwind
scheme given by

q̂j+1/2 = qn
j . (17)

A more accurate nonoscillatory scheme with continuous Jacobian is given by

q̂j+1/2 = qj + 1

2
(1− c)φ(r j )9(sj )(qj+1− qj ), (18)

whereq’s are now understood to be evaluated at stepn unless otherwise indicated. Here

r j = qj − qj−1

qj+1− qj

andφ(r ) is one of the well-known van Leer limiter functions [27]

φ(r ) = r + |r |
1+ |r | .

If the function9 were identically unity then this scheme would be a familiar TVD scheme
(satisfying (7)), but which has discontinuities in∂Ak/∂qj for flat profiles and wherer j → 0
or∞. To remove these discontinuities,9 is defined to be a function that controls a smooth
transition from a first-order upwind scheme (9 = 0) for flat profiles to the original TVD
scheme (9 = 1) at large amplitude:

29(s) = s+ |s|
1+ |s| ,
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where

sj = (qj+1− qj )(qj − qj−1)

a2
,

anda is a tunable parameter that defines the amplitude for the transition. It may be verified
that∂Ak/∂qj is indeed continuous for the resulting scheme. However, the resulting scheme
no longer satisfies (7).
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